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Abstract

Background Long-term stretching of human skeletal muscles increases joint range of motion through altered
stretch perception and decreased resistance to stretch. There is also some evidence that stretching induces changes
in muscle morphology. However, research is limited and inconclusive.

Objective To examine the effect of static stretching training on muscle architecture (i.e, fascicle length and fascicle
angle, muscle thickness and cross-sectional area) in healthy participants.

Design Systematic review and meta-analysis.

Methods PubMed Central, Web of Science, Scopus, and SPORTDiscus were searched. Randomized controlled trials

and controlled trials without randomization were included. No restrictions on language or date of publication were

applied. Risk of bias was assessed using Cochrane RoB2 and ROBINS-I tools. Subgroup analyses and random-effects

meta-regressions were also performed using total stretching volume and intensity as covariates. Quality of evidence
was determined by GRADE analysis.

Results From the 2946 records retrieved, 19 studies were included in the systematic review and meta-analysis
(n=467 participants). Risk of bias was low in 83.9% of all criteria. Confidence in cumulative evidence was high.
Stretching training induces trivial increases in fascicle length at rest (SMD=0.17; 95% CI 0.01-0.33; p=0.042) and small
increases in fascicle length during stretching (SMD=10.39; 95% Cl 0.05 to 0.74; p=0.026). No increases were observed
in fascicle angle or muscle thickness (p=0.30 and p=0.18, respectively). Subgroup analyses showed that fascicle
length increased when high stretching volumes were used (p < 0.004), while no changes were found for low stretch-
ing volumes (p=0.60; subgroup difference: p=0.025). High stretching intensities induced fascicle length increases

(p <0.006), while low stretching intensities did not have an effect (p=0.72; subgroup difference: p=0.042). Also, high
intensity stretching resulted in increased muscle thickness (p=0.021). Meta-regression analyses showed that longitu-
dinal fascicle growth was positively associated with stretching volume (p < 0.02) and intensity (p < 0.04).

Conclusions Static stretching training increases fascicle length at rest and during stretching in healthy participants.
High, but not low, stretching volumes and intensities induce longitudinal fascicle growth, while high stretching inten-
sities result in increased muscle thickness.

Registration PROSPERQ, registration number: CRD42021289884.
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« Static stretching training induces trivial increases in fascicle length at rest and small increases in fascicle length

during stretching.

+ High, but not low, stretching volumes and intensities induce longitudinal fascicle growth.
«+ High stretching intensities result in increased muscle thickness.
+ Fascicle angle remains unaffected by static stretching training.

Keywords Fascicle length, Muscle thickness, Pennation angle, Cross-sectional area, Stretching, Ultrasound

Background
Human skeletal muscle responds to mechanical load-
ing by adapting its structure [1]. Muscle structure can
be described by quantifying its architectural parame-
ters, namely fascicle length and angle, muscle thickness,
and cross-sectional area, using ultrasonography [2, 3].
Mechanical loading induced either by muscle contrac-
tion or muscle stretching triggers alterations in cellular
signaling and gene expression, which modify the physi-
ological, structural, and contractile properties of muscle
fibers [1, 4, 5]. Training using lengthening vs. shorten-
ing muscle contractions, leads to greater increases in
strength, fascicle length and cross-sectional area [6]. On
the other hand, stretch-induced mechanical tension has
been shown to increase fascicle length, muscle mass,
mean fiber thickness, and fiber number in animals [7, 8],
but the volumes and intensities of such interventions are
very different from what is typically applied in humans.
Skeletal muscle stretching is commonly used in sports
and clinical settings, with the aim to increase maximum
joint range of motion (ROM) and muscle-tendon unit
extensibility [9]. Increased ROM following long-term
stretching interventions may be explained by increased
stretch tolerance [10] and/or changes in tissue mechan-
ical properties [11-13], while some recent studies have
found changes in muscle morphology [14, 15]. To date,
however, muscle architectural adaptations to static
stretching in humans are unclear [9, 16—19]. Most stud-
ies found no detectable changes in fascicle angles and
muscle thickness following static stretching training [9,
14, 15, 17, 19], with some notable exceptions [15, 16,
20-22]. Regarding fascicle length, an increase in resting
values has been found following 6-12 weeks of stretch-
ing training [9, 14, 23], while increases in muscle fas-
cicle length during stretching may appear earlier, i.e,,
after 3—4 weeks of static stretching training [24, 25]. In
contrast, other studies did not detect changes in mus-
cle architecture following stretching interventions [24,
26]. For example, in an earlier meta-analysis examin-
ing the effects of three types of stretching training on
joint mechanical properties [19] no increases in fascicle

length were found following 2-8 weeks of training.
The authors assumed that the three stretching types
may target different the tissues around a joint e.g.,
PNF stretching may target tendon stiffness more than
static stretching since the contraction during stretch
overstretches the tendon [27]. Thus, the conflicting
results between studies can be partly attributed to dif-
ferences in stretching protocols and methodologies
used [19]. Longer-term static stretching interventions
[9, 15], overloaded static stretching [14], and high-
intensity and/or long-duration stretching bouts [15, 23]
may be more effective in inducing changes in muscle
morphology.

Collectively, there seems to be no consensus on
the feasibility and magnitude of muscle architectural
changes after stretching training in humans, as well
as on the stretching load characteristics required to
induce changes in muscle morphology [14, 17, 24, 26].
Since changes in muscle architecture are linked to mus-
cle contractile properties in healthy participants (e.g.,
force and power generation) [28, 29] and clinical popu-
lations [30], it would be of great interest to examine the
potential adaptations of muscle architecture to static
stretching. Therefore, the current systematic review
aimed to examine the effects of static stretching train-
ing on muscle architecture (fascicle length and fascicle
angle, muscle thickness, and cross-sectional area) and
to conduct a meta-analysis. In addition, we examined if
stretch-induced adaptations in muscle architecture are
dependent on stretch volume and intensity.

Methods

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [31] (see Addi-
tional file 1: S1 for PRISMA checklist). The review was
preregistered with the International Prospective Reg-
ister of Systematic Reviews (PROSPERO; registration
number: CRD42021289884).
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Search and Selection Strategy

PICOS (Population, Intervention, Comparison, Out-
come, Study Design) was used to form the research
question and to select the search terms. Four reviewers
searched independently four electronic databases (IP,
VG, AD, OD): PubMed Central, Scopus, Web of Sci-
ence, and SPORTDiscus to identify studies examining the
effect of static stretching training on muscle architecture
(i.e., fascicle length and fascicle angle, muscle thickness
and cross-sectional area). The search was completed in
July 2022 and the keywords used in the above databases
are reported in the Additional file 2: S2. No language,
study design and date restrictions were applied in the
search algorithm. The field types used in the search were:
“Title”, “Abstract” and “Keywords” Additional records
were found by: (1) searching the reference lists of relevant
review papers and studies meeting the eligibility criteria
(2) screening the researchers’ personal lists (first authors)
in ResearchGate and Google Scholar [32, 33]. Further-
more, two studies which were not identified in the sys-
tematic searches were also included in the meta-analysis,
based on our knowledge of the area. Three investigators
(AD, AK and PCD) selected the eligible studies, and
disagreements were resolved by GCB and GT by major-
ity consensus. Reliability of study selection was calcu-
lated using the Kappa agreement coefficient, which was
between 0.747 and 0.836.

Inclusion and Exclusion Criteria

Randomized controlled trials (RCTs) and controlled tri-
als without randomization (CTs) using static stretching
training lasting>3 weeks were included. The limit of
3 weeks was chosen according to the relevant literature,
as the shortest stretching training intervention of the eli-
gible studies. Studies with healthy (i.e., non-clinical), rec-
reationally active or trained participants were included.
Comparisons were made between delta values (i.e., post-
minus pre-intervention measurements) of experimental
and control groups. Studies with the following charac-
teristics were excluded: (a) studies examining the acute
effects of static stretching, (b) studies combining static
stretching with other interventions, such as strength
training, etc., (c) studies examining very small joints,
such as fingers, (d) animal or in vitro studies, (e) review
papers, retrospective studies, case reports, letters to the
editor, special communications, invited commentaries
and conference papers.

Risk of Bias Assessment and Methodological Quality

IP and OD independently assessed the risk of bias (RoB)
of the included studies, and any conflict was resolved
through discussion with GCB and AK. Risk of bias for
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randomized controlled trials and controlled trials with-
out randomization was assessed using the updated
Cochrane Risk of Bias 2 (RoB 2) and Risk of Bias in
Non-randomized Studies-of Interventions (ROBINS-I),
respectively. The sources of bias included in the updated
Risk of Bias 2 (RoB2) Cochrane library were: bias arising
from the randomization process, bias due to deviations
from intended interventions (effect of assignment to
intervention and effect of adhering to intervention), bias
due to missing outcome data, bias in the measurement of
the outcome, and bias in selection of the reported result
[34]. The sources of bias included in ROBINS-I were: bias
due to confounding, bias in selection of participants into
the study, bias in classification of interventions, bias due
to deviations from intended interventions, bias due to
missing data, bias in measurement of outcomes, and bias
in selection of the reported results [34, 35].

Confidence in Cumulative Evidence

Quality and confidence in the cumulative evidence were
assessed using the Grading of Recommendations, Assess-
ment, Development and Evaluations (GRADE) quality
rating analysis. GRADE includes four levels of evidence
quality: very low, low, moderate, and high [35, 36]. For
randomized controlled trials, GRADE starts by assuming
high quality, which can be downgraded according to five
evaluation components (Risk of Bias, Inconsistency of
results, Indirectness, Imprecision and Publication Bias)
[35, 36], while three evaluation components were used to
upgrade quality (Large Effect, Dose Response, Confound-
ing). GRADE analysis was performed independently by
IP and OD and was verified by GCB and PCD.

Data Extraction

Data extraction from the included papers was performed
by three independent investigators (I, VG, and AK),
and was supervised by two referee investigators (GT and
PCD). The following data fields were extracted: (a) authors,
(b) date and type of publication (journal, paper or grey
literature), (c) study design type (RCT or CT) (d) sample
size, sex and age of the experimental and control groups,
(e) anthropometric characteristics of the experimental and
control groups (body mass and height) (f) physical activ-
ity level of the participants (g) main outcomes of the study
(means and standard deviations) regarding fascicle length
(at rest and during stretching), fascicle angle and muscle
thickness for the experimental and control groups. Cross-
sectional area of the gastrocnemius muscle was measured
in only two studies [15, 37] and thus a meta-analysis could
not be performed. The results of these two studies are
briefly reported in the Discussion. The characteristics of
the included studies can be found in Table 1.
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Also, the following information was extracted from
the included studies: (a) joints and muscles examined,
(b) the stretching intervention characteristics (i.e., the
duration of each stretching bout, the number of stretch-
ing exercises, the number of sets, and the frequency of
stretching training per week). From these data, the fol-
lowing parameters were calculated: (a) daily stretching
duration (duration of each stretching boutXnumber

Table 2 Characteristics of the stretching interventions
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of sets X number of exercises), (b) the stretching dura-
tion per week (duration of daily stretching X number of
stretching trainings per week) and (c) the total duration
of the stretching intervention (stretching duration per
week X number of weeks). Stretch intensity, expressed
by the perceived rating of pain, was also extracted. The
characteristics of the stretching protocols can be found
in Table 2.

Study Stretching Number  Number Frequency Daily stretch Weeklyload Study Total Stretching
duration of ofsets perweek inaweek(s) (s) duration stretching intensity
(bout) (s) exercises (weeks) duration
Akagi and 120 1 3 6 360 2160 5 10,800 Without suffer-
Takahashi [42] ing discomfort
or pain
Andradeetal. 45 2 5 5 450 2250 12 27,000 Max, onset of
9 pain
Blazevich etal. 30 1 8 7 240 1680 3 5400 Within the limit
[24] of pain
Brusco et al. 60 1 8 2 480 960 6 5760 Max-tolerable
[41]
Freitas and Mil- 90 1 5 5 450 2250 8 18,000 POD
Homens [23]
Kay et al. [21] 36 1 5 2 180 360 2160 POD
Konrad and 30 1 4 5 120 600 3600 POD
Tilp [26]
Limaetal.[43] 30 1 3 3 90 270 8 2160 Preceding pain
threshold
Longo et al. 45 2 5 5 450 2250 12 27,000 POD
[16é]
Mizuno [20] 30 1 4 3 120 360 8 2880 Without feeling
pain
Moltubakk 60 4 4 7 240 1680 24 40,320 Without pain
etal . [17]
Nakamura 60 1 3 3 180 540 4 2160 Between 6-7
etal. [22] 60 1 3 3 180 540 2160 Greatest toler-
ated dorsiflexion
with no or little
pain
Nakamura 60 1 2 7 120 840 4 3360 POD
etal. [25]
Panidi et al. 7875 6 2 5 945 4725 12 56,700 POD
(15]
Peixinhoetal. 30 2 2 4 120 480 10 4800 Tolerable dis-
[37] comfort
Sekiretal.[44] 30 1 4 5 120 600 3600 Mild discomfort
30 2 4 5 240 1200 7200
Simpson etal. 180 1 1 5 180 900 5400 Mild discomfort
[14]
Warneke etal. 3600 1 1 7 3600 25,200 6 151,200 POD with an
[45] orthosis
Yahata et al. 300 1 6 2 1800 3600 5 18,000 20% maximum

(18]

voluntary con-
traction

POD: point of discomfort
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Data Synthesis and Meta-Analysis Methods

Data for the meta-analysis were obtained from all the
included studies in the systematic review. Means and stand-
ard deviations for each variable of interest, before and after
the intervention or control period, were extracted either
from the Results section of the manuscript or from tables
and figures. In the case of missing data, the corresponding
authors of the included studies were contacted via email.
Delta scores were calculated from the pre- and post-inter-
vention means, by subtracting the baseline from the post-
intervention values. Standard deviations for the delta
scores were calculated using the following equation:

\/(SDZPre + SD?post) —(2 x 0.70 x SDpre x SD post)

[34]. The standardized mean difference approach, using
the delta scores and SDs of the experimental and control
groups, was then used. The meta-analysis was conducted
by employing an inverse-variance, continuous, random-
effects model, using the metafor package in R [38]. The
syntax file can be found in the Additional file 9. Hetero-
geneity in the effects was determined by the Q and I sta-
tistic [36], using a cut off value of I*=75% as an index of
considerable heterogeneity [35]. For each architectural
characteristic (fascicle length, fascicle angle, and muscle
thickness), an omnibus analysis was performed irrespec-
tive of the stretching protocol by AM. This was followed
by separate analyses for each protocol and complemented
by comparisons between high and low total stretching
volume load as well as between high and low stretching
intensity by AM. The cut-off value for the stretching vol-
ume load was determined according to the median split
method (median=5400 s) [39]. This median value repre-
sents the total stretching duration of 6 weeks of training
performed five times per week, with each session includ-
ing two stretching exercises of 30 s executed for three
sets. Low-intensity studies included those which
described stretch intensity as “no pain perception’
“stretching preceding pain threshold’, “pain between 6
and 7 on an analog scale ranging from 1 to 10”, and “with-
out suffering discomfort” (Table 2). High-intensity stud-
ies included those which described pain perception as
“highest or maximum tolerable”, “point of discomfort’,
and “maximum tolerable after the onset of pain”
(Table 2). Thus, primary outcomes were: (a) changes in
fascicle length at rest and during stretching, (b) fascicle
angle, and (c) muscle thickness. Subgroup analyses
included differences according to stretching volume (high
vs. low) and intensity (high vs. low). In addition, random
effects meta-regression analyses were conducted using
the total stretching volume load and stretching intensity
as covariates (IBM SPSS Statistics Version 28.0, IBM
Corporation, Armonk, New York, USA). Standardized
mean differences (SMD) were characterized as trivial
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(<0.2), small (0.2-0.6), moderate (0.6-1.2), large (1.2—
2.0), very large (2.0-4.0), and extremely large (>4.0) [40].
An alpha level of 0.05 was defined for the statistical sig-
nificance of all the tests, apart from heterogeneity
(p<0.10). Moreover, Egger’s regression intercept test and
visual inspection of the funnel plots were applied to
detect possible publication bias.

Results

Results of the Search Procedure

Initially, 2946 papers were retrieved. After duplicates
were removed (n=1433), 1513 papers remained for eligi-
bility evaluation. Of these 1513 papers, 53 were reviews,
25 examined acute stretching interventions, 54 involved
clinical populations, 122 involved animals, five were case
reports, 15 conference papers, and 1212 were studies not
directly relevant to the study purpose. Finally, 27 papers
were eligible for this study, of which one paper could not
be obtained, despite having contacted the correspond-
ing author. The reference lists of the 26 remaining eligible
studies were then checked for additional relevant studies.
Following this additional search of the references and the
inclusion of our own library, we identified and added two
more relevant papers. After screening the full texts of
the 28 eligible papers, 9 papers were excluded for differ-
ent reasons (see Fig. 1). Therefore, 19 papers were finally
included in this systematic review and were used in the
meta-analyses. A flow chart of the search process is pre-
sented in Fig. 1.

Characteristics of the Included Studies

The 19 eligible studies were published between 2013
and 2022 and included 467 participants (342 males),
aged 21.1+1.6 years. All the eligible studies used static
stretching and all the protocols targeted the lower limbs.
Their characteristics are presented in Table 1. Out of the
19 eligible studies, five were CTs [14, 18, 20, 37, 41] and
14 were RCTs [9, 15-17, 21-26, 42—-45]. Fourteen stud-
ies examined resting fascicle length (30 entries), six stud-
ies examined fascicle length during stretching (9 entries),
15 studies (31 entries) examined muscle thickness and 11
studies (25 entries) examined fascicle angle. A detailed
description of the stretching protocols (i.e., the duration
of each stretching bout, number of exercises and sets,
joints involved, and total stretching duration) is provided
in Table 2.

Risk of Bias Assessment

A summary of the risk of bias assessment is provided in
Figs. 2 and 3 for the RCTs and CTs, respectively. Detailed
descriptions of the risk of bias assessment for all the
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Fig. 1 PRISMA flowchart illustrating different phases of the search and study selection

Selection bias

Measurement bias

Missing data bias

Adherence bias

Assignment bias

Randomization bias |

olOW QOpSOME CONCERNS m HIGH

Fig.2 Summary of risk of bias assessment for randomized controlled trials
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Reporting bias
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Missing data bias
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Fig. 3 Summary of risk of bias assessment for controlled trials

included studies are presented in the Additional files 3
and 4: S3 and S4 for the RCTs and CTs, respectively.

Primary Outcomes

Our meta-analysis of fascicle length, which included all
the studies, regardless of their intervention protocol but
in which we took into account the nesting structure of
some data (given that in some studies the same muscle
was assessed twice at two different muscle parts) indi-
cated statistically significant differences in resting fascicle
length between the experimental groups and the control
groups (SMD=0.17; SE=0.08, z=2.03, p=0.042, 95% CI
0.01 to 0.33; Q(29)=35.56, p=0.19, I*=24.15%; Fig. 4).
Likewise, stretching training yielded significant differ-
ences in fascicle length during stretching (SMD=0.39;
SE=0.18, z=2.23, p=0.026, 95% CI 0.05 to 0.74;
Q(8)=13.49, p=0.10, I>=46.90%; Fig. 5).

No differences were found either in fascicle angles
(SMD=0.08, SE=0.07, z=1.03, p=0.30; 95% CI —0.07
to 0.22; Q(24)=26.97, p=0.31, >’=0.00%; Fig. 6) or in
muscle thickness following the stretching interventions
(SMD=0.11; SE=008, z=1.35, p=0.18; 95% CI —0.05 to
0.28; Q(30)=45.99, p=0.03; I>=33.22%).

Subgroup and Meta-Regression Analyses

Although we found no systematic heterogeneity in our
analyses, we further examined the degree to which the
research protocol (i.e., less vs. more than 5400 s) would

reveal differences between the experimental and control
groups, given that the Q statistic and its derivative, %, are
insensitive to detect heterogeneity when meta-analyzing
a small number of studies [46].

Fascicle Length by Stretching Volume Interaction

Out of the 30 entries analyzed, 11 had a low total volume
(i.e.,<5400 s) and 19 had a high total volume (>5400 s).
The low and high-volume load groups differed in total
stretching volume (303041057 vs. 24,953+17,099 s,
p=0.003), due to the 2.5-fold longer stretching bout
duration 104+92 vs. 42+15 s) and the longer inter-
vention duration in the high vs. low volume load group
(10.6+£6.2 vs. 5.1+1.6 weeks, respectively, p=0.028),
while the number of exercises, sets and the frequency of
training per week were similar. Interestingly, whereas no
differences were found among the (#=11) studies which
induced a low total volume (i.e., <5400 s), SMD=—0.06;
SE=0.12, z=-0.52, p=0.60. 95% CI —0.30 to 0.17;
Q(10)=6.46, p=0.78; =0.00%, such differences
emerged among the (n=19) studies which induced a
high total volume (i.e.,>5400 s) SMD=0.29; SE=0.10,
z=2.85, p=0.004, 95% CI 0.09 to 0.49; Q(18)=22.79,
p=0.20; ’=26.68%. A comparison of the standardized
means of the two groups showed statistically significant
differences (z=-2.25, p=0.024). Random effects meta-
regression analysis also showed that total stretching
volume is a moderator of longitudinal fascicle increases
(»=0.02, R?=0.76).



Panidi et al. Sports Medicine - Open

Study

(2023) 9:47

Standardized Mean

Page 18 of 27

SMD 95%-Cl

Studies with <5400 s

Difference (SMD)

Blazevich et al. [24] » ! -0.27 [-1.11, 0.57]
Kay et al. [21] f - 0.07 [-0.70, 0.84]
Konrad and Tilp [26] -0.15[-0.79, 0.49]
Lima et al. (BF) [43] [ : | 0.22 [-0.60, 1.04]
Lima et al. (VL) [43] | - | 0.23 [-0.60, 1.05]
Nakamura et al. (high GL) [22] ——— 0.00 [-0.75, 0.75]
Nakamura et al. (high GM) [22] P S -0.43[-1.19, 0.34]
Nakamura et al. (low GL) [22] F = ! 0.27 [-0.51, 1.04]
Nakamura et al. (low GM) [22] = | -0.64 [-1.43, 0.15]
Nakamura et al. [25] » | -0.34 [-1.28, 0.59]
Sekir et al. (TIB) [44] F 0.38 [-0.45, 1.20]
“Subgroup summary > M = -006[-030,017]

Studies with > 5400 s
Andrade et al. (muscle GL) [9] l—l—i 0.39[-0.24, 1.03]
Andrade et al. (muscle GM) [9] I—-—| 0.57 [-0.07, 1.21]
Freitas and Mil-Homens [23] f = 0.67 [-0.60, 1.95]
Longo et al. (distal GL) [16] —— 0.01 [-0.71, 0.72]
Longo et al. (medial GL) [16] e 0.15 [-0.57, 0.87]
Longo et al. (distal GM) [16] ] 0.07 [-0.65, 0.78]
Longo et al. (medial GM) [16] l—l—| 0.20 [-0.52, 0.92]
Longo et al. (distal SOL) [16] |—-—| 0.01[-0.71,0.72]
Longo et al. (medial SOL) [16] |—-—{ -0.11 [-0.83, 0.61]
Moltubakk et al. [17] |——-—| 0.13[-0.41, 0.68]
Panidi et al. (Distal GL) [15] l——!—! 0.19 [-0.42, 0.80]
Panidi et al. (Medial GL) [15] e 0.95[0.31, 1.59]
Panidi et al. (Distal GM) [15] S 0.82[0.19, 1.45]
Panidi et al. (Medial GM) [15] I — 0.75[0.12, 1.37]
Sekir et al. (PER) [44] - ! -0.52 [-1.35, 0.32]
Simpson et al. (GL) [14] [ - 1.01[0.12, 1.90]
Simpson et al. (GM) [14] F = 0.72[-0.14, 1.58]
Yahata et al. (GL) [18] I—I—| -0.16 [-0.85, 0.54]
Yahata et al. (GM) [18] l—-—| -0.01[-0.71, 0.68]
Subgroup summary < 0.29[0.09, 0.49]

S 2 0.17 [0.01, 0.33]

T 1 T
-05 0 05

Fig. 4 Effect of static stretching training on fascicle length at rest (overall effect and according to the total stretching volume). 95% Cl: Confidence
Interval. Note: GM: gastrocnemius medialis; GL: gastrocnemius lateralis; VL: vastus lateralis; BF: biceps femoris; SOL: soleus; PER: peroneus muscle; TIB:

tibialis muscle
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Study Standardized Mean

%-
Difference (SMD) SMD  95%-Cl

Blazevich et al. [24] [ - | 0.11[-0.73, 0.95]
Konrad and Tilp [26] I——l—i 0.14 [-0.49, 0.78]
Moltubakk et al. [17] l—l—l -0.06 [-0.60, 0.49]
Nakamura et al. [25] f l ! -0.09 [-1.01, 0.84]
Panidi et al. (Distal GL) [15] —— 0.96 [ 0.32, 1.60]
Panidi et al. (Distal GM) [15] l—-—| 0.59 [-0.03, 1.21]
Panidi et al. (Medial GL) [15] e 0.83[0.20, 1.46]
Panidi et al. (Medial GM) [15] ] 1.05[0.41, 1.70]
Peixinho et al. [37] F = | 0.48 [-0.43, 1.38]
Summary ‘ M = 0.39[0.05,0.74]
I T T | T T 1

15 -1 05 O 0.5 1 15
Fig. 5 Effect of static stretching training on fascicle length during stretching. 95% Cl: Confidence Interval. Note: GM: gastrocnemius medialis; GL:
gastrocnemius lateralis
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SMD 95%-Cl

Studies with < 5400 s
Kay et al. [21]

2.29[1.30, 3.28]

[ T I I I

Konrad and Tilp [26] -0.22 [-0.86, 0.42]
Lima et al. (BF) [43] f = ! -0.08 [-0.90, 0.74]
Lima et al. (VL) [43] f = ! 0.21[-0.61, 1.03]
Mizuno [20] . » 0.76 [-0.07, 1.59]
Nakamura et al. (high GL) [22] } » ! 0.31 [-0.45, 1.07]
Nakamura et al. (high GM) [22] |——-—[ 0.25[-0.51, 1.01]
Nakamura et al. (low GL) [22] f = ! 0.27 [-0.51, 1.04]
Nakamura et al. (low GM) [22] f = { -0.22 [-0.99, 0.56]
Sekir et al. (TIB) [44] [ I 0.00 [-0.82, 0.82]
“Subgroup summary T e = 0.31[-0.09, 0.72]
Studies with > 5400 s
Freitas and Mil-Homens [23] < = ! -0.47 [-1.72,0.79]
Longo et al. (distal GL) [16] |—n——| -0.20 [-0.91, 0.52]
Longo et al. (medial GL) [16] l—I-—l -0.06 [-0.78, 0.65]
Longo et al. (distal GM) [16] l—r—i -0.10 [-0.82, 0.61]
Longo et al. (medial GM) [16] I—l—| 0.02 [-0.70, 0.73]
Longo et al. (distal SOL) [16] I—l—i 0.04 [-0.68, 0.75]
Longo et al. (medial SOL) [16] |—l~—| -0.10[-0.81, 0.62]
Moltubakk et al. [17] I—l—| -0.04 [-0.58, 0.51]
Panidi et al. (Distal GL) [15] I——l—i 0.10[-0.50, 0.71]
Panidi et al. (Medial GL) [15] |—-—| 0.10[-0.50, 0.71]
Panidi et al. (Distal GM) [15] l—-——| -0.12[-0.72, 0.49]
Panidi et al. (Medial GM) [15] I——I—i 0.12[-0.48, 0.73]
Sekir et al. (PER) [44] [ - 0.00 [-0.82, 0.82]
Yahata et al. (GL) [18] l—-—| 0.05 [-0.65, 0.74]
Yahata et al. (GM) [18] |—l—| 0.00 [-0.69, 0.69]
Subgroup summary <> -0.02 [-0.19, 0.16]
0 0.08 [-0.07, 0.22]

15 -1 05 O 0.5 1 1.5
Fig. 6 Effect of static stretching training on fascicle angle (overall effect and subgroups comparisons by total stretching volume). 95% ClI:
Confidence Interval. Note: GM: gastrocnemius medialis; GL: gastrocnemius lateralis; VL: vastus lateralis; BF: biceps femoris; SOL: soleus; PER: peroneus
muscle; TIB: tibialis muscle
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SMD 95%-Cl

Studies with Low Intensity
Blazevich et al. [24]

Lima et al. (BF) [43]

Lima et al. (VL) [43]
Moltubakk et al. [17]
Nakamura et al. (high GL) [22]
Nakamura et al. (high GM) [22]
Nakamura et al. (low GL) [22]
Nakamura et al. (low GM) [22]
Sekir et al. (PER) [44]

Sekir et al. (TIB) [44]

Subgroup summary

Studies with High Intensity
Andrade et al. (muscle GL) [9]
Andrade et al. (muscle GM) [9]
Freitas and Mil-Homens [23]
Kay et al. [21]

Konrad and Tilp [26]

Longo et al. (distal GL) [16]
Longo et al. (medial GL) [16]
Longo et al. (distal GM) [16]
Longo et al. (medial GM) [16]
Longo et al. (distal SOL) [16]
Longo et al. (medial SOL) [16]
Nakamura et al. [25]

Panidi et al. (Distal GL) [15]
Panidi et al. (Medial GL) [15]
Panidi et al. (Distal GM) [15]
Panidi et al. (Medial GM) [15]
Simpson et al. (GL) [14]
Simpson et al. (GM) [14]
Yahata et al. (GL) [18]
Yahata et al. (GM) [18]

Subgroup summary

Difference (SMD)

-0.27 [-1.11, 0.57]
0.22 [-0.60, 1.04]
0.23 [-0.60, 1.05]
0.13 [-0.41, 0.68]
0.00 [-0.75, 0.75]

-0.43[-1.19, 0.34]
0.27 [-0.51, 1.04]

-0.64 [-1.43, 0.15]

-0.52 [-1.35, 0.32]
0.38 [-0.45, 1.20]

-0.04 [-0.28, 0.20]

0.39 [-0.24, 1.03]
0.57 [-0.07, 1.21]
0.67 [-0.60, 1.95]
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Fig. 7 Effect of high and low stretching intensity on fascicle length; 95% Cl: Confidence Interval. Note: GM: gastrocnemius medialis; GL:
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Fascicle Length by Stretching Intensity Interaction

Out of the 30 entries analyzed, 9 had low intensity and
19 had high intensity. Only the high stretching intensi-
ties induced small increases in fascicle length following
stretching (SMD =0.28, SE=0.10, z=2.77, p=0.006; 95%
CI0.08 to 0.47; Q(19) =22.84, p=0.24; > =24.83%; Fig. 7).
In contrast, low stretching intensities did not affect fas-
cicle length in the experimental groups (SMD=-0.05,
SE=0.12, z=-0.36; p=0.72; 95% CI —0.28 to 0.20;
Q(9)=7.53, p=0.58; P=0%; Fig. 7). A comparison of the
two models showed statistically significant differences
(z=—2.04, p=0.042). Random effects meta-regression
analysis showed that stretching intensity is a moderator
of longitudinal fascicle increases (p < 0.04, R%?=0.52).

Fascicle Angle by Stretching Volume Interaction

Out of the 25 entries analyzed, 10 had low volume and
15 had high volume. High or low stretching volumes did
not induce changes in fascicle angle following stretch-
ing (SMD=-0.02, SE=0.09, z=-0.19, p=0.86; 95%
CI —0.19 to 0.16,; Q(14)=1.55, p=1.00, *=0.00% and
SMD =0.32, SE=0.21, z=1.53, p=0.13; 95% CI —0.09 to
0.72, Q(9) =22.31; I =61.27%, respectively; Subgroup dif-
ference: z=1.45, p=0.14; Fig. 6).

Fascicle Angle by Stretching Intensity Interaction

Out of the 25 entries analyzed, 11 had low intensity and
14 had high intensity. High or low stretching intensi-
ties did not induce changes in fascicle angle following
stretching, (SMD=0.15; SE=0.18, z=0.84, p=0.40, 95%
CI —0.20 to 0.50; Q[13]=21.67, p=0.06; I*=60.01% and
SMD=0.12, SE=0.12, z=1.00, p=0.32; 95% CI —0.11 to
0.35, Q[13]=4.38, p=0.93; P=0.00%, respectively; Sub-
group difference: z=—-0.16, p=0.88).

Muscle Thickness by Stretching Volume Interaction

Out of the 31 entries analyzed, 11 had low volume and
20 had high volume. High or low stretching volumes
did not induce changes in muscle thickness following
stretching, (SMD=0.11, SE=0.10, z=1.16, p=0.25; 95%
CI —0.08 to 0.30; Q(19)=25.06, p=0.16; [*=29.33% and
SMD=0.13, SE=0.18, z=0.76, p=0.45; 95% CI —0.21 to
0.48; Q(10)=20.89, p=0.022; ’=51.64%, respectively;
subgroup difference: z=011, p=0.92).

Muscle Thickness by Stretching Intensity Interaction

Out of the 31 entries analyzed, 13 had low intensity and
18 had high intensity. Subgroup analysis showed that
stretching training with high intensity induced a small
increase in muscle thickness, (SMD=0.27, SE=0.12,
z=2.31, p=0.021; 95% CI 0.04 to 0.51, Q(17)=29.04,
p=0.034; *=42.49%), while low intensity stretching had
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no effect (SMD=-0.11, SE=0.11, z=—1.03, p=0.30;
95% CI —0.32 to 0.10, Q(12) =8.72, p=0.73; I*=0%; sub-
group difference: z=—2.41, p=0.016, Fig. 8).

Confidence in Cumulative Evidence

Detailed GRADE analyses can be found in the Additional
file 5: S5. In this study, 14 randomized controlled trials
and five controlled trials were included thus, GRADE
started assuming high quality. The quality of evidence
was not downgraded for Risk of Bias, inconsistency of the
results or indirectness but was downgraded by one level
for publication bias. According to GRADE guidelines,
we used the threshold of 800 participants as a cut off
point for imprecision on the results of the pooled analy-
sis. Thus, fascicle length during stretching (n=319) and
fascicle angle analyses (n="760) were downgraded by one
level. Since a dose-response effect was found for fascicle
length, the studies examining longitudinal fascicle length
were upgraded. For the same reason, studies examining
the effects of stretching intensity on muscle thickness
were also upgraded. Overall, the analysis showed that
we can have considerable confidence that the true effect
is similar to the estimated effect. Visual inspection of the
funnel plots implied no publication bias (see Additional
files 6, 7, 8: Figs. 1-3 for funnel plots). In addition, Egger’s
regression intercept test revealed no publication bias for
fascicle length, fascicle angle and muscle thickness (inter-
cept=0.525, p=0.313, —0.743, p=0.292 and —0.195,
p=0.802, respectively).

Discussion

The aim of this systematic review and meta-analysis was
to examine the effects of static stretching training on
muscle architecture. The main meta-analysis, including
a total of 19 studies and 467 participants, indicated that
static stretching training induces trivial increases in fas-
cicle length at rest and small increases in fascicle length
during stretching in healthy participants. As shown
by subgroup analyses and meta-regression, increases
in fascicle length and muscle thickness are moderated
by stretching volume and intensity. Specifically, high
stretching volumes and intensities induce longitudinal
fascicle growth, while high stretching intensities result in
increased muscle thickness. Fascicle angle remains unaf-
fected by static stretching training.

It has been shown that fascicle length reflects the
number of sarcomeres in series and is related to maxi-
mum muscle excursion [29]. In animal studies, long-
term immobilization in a lengthened position induces
increases in muscle fiber length [7, 47, 48], possibly due
to the addition of sarcomeres in series [8]. However, an
increase in fascicle length following stretching in humans
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Fig. 8 Effect of static stretching training on muscle thickness (overall effect and subgroups comparisons by stretching intensity). 95% Cl:
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has not been clearly demonstrated to date. The main
meta-analysis showed a significant increase in resting
fascicle length following static stretching training which
approached a small magnitude change (SMD=0.17,
p=0.042). Since static stretching is commonly used in
sports, rehabilitation, and clinical settings [9], even trivial
changes in fascicle length may be of importance.

During stretching, mechanical stress and, most impor-
tantly, total time under tension, contribute to morpho-
logical adaptations [49]. It has been hypothesized that
when a muscle is systematically stretched to long mus-
cle lengths, sarcomere number in series may increase
to reduce passive tension and to maintain optimal
actin-myosin overlap [49, 50]. The results of the present
meta-analysis indicated that only high stretching vol-
umes or high stretching intensities induce increases in
fascicle length (SMD=0.29, p=0.004 and SMD=0.28
p=0.006, respectively) while low stretching volumes and
intensities did not induce changes in muscle morphol-
ogy (SMD=-0.06, p=0.60 and SMD=-0.04 p=0.72,
respectively). Thus, it seems that total mechanical stress,
as expressed by volume load and intensity, is an impor-
tant modulator of the increases in fascicle length dur-
ing stretching training [11, 17]. For example, significant
increases in gastrocnemius medialis fascicle length at
rest and in gastrocnemius lateralis fascicle length dur-
ing stretching, were found after 12 weeks of daily high-
intensity and high volume stretching [9, 15]. In contrast,
a 6-month intervention using low intensity stretching did
not result in fascicle length changes of gastrocnemius
[17].

The cut-off value for the stretching volume in the pre-
sent study (i.e., 5400 s or 90 min), represents the total
stretching duration of six 30 s sets performed five times
per week for 6 weeks, and is higher than what is com-
monly used in sports practice [51]. The high and low vol-
ume subgroups differed largely in total stretching volume
(30301057 vs. 24,953 +17,099 s, p=0.003), due to the
2.5-fold longer stretching bout duration and the longer
intervention duration in the high vs. low volume load
group, while the number of exercises, sets and the fre-
quency of training per week were similar (Table 2). These
findings highlight the importance of long stretching bout
duration (from 30 to 300 s, average of 101 s) to achieve
an increase in fascicle length. Notably, these stretch-
ing bout durations are much higher than those used by
athletes (10-20 s, average of 14.5 s) during their practice
[51], suggesting that longer stretching bouts should be
employed when morphological changes in muscles are
required. Since prolonged stretching duration (>60-s per
muscle group per session) may acutely impair strength
and power parameters [52, 53] it is suggested that long
duration and high intensity stretching bouts should
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be included in a separate flexibility training session.
Additionally, the difference in the intervention dura-
tion between high and low volume groups (10.6+6.2 vs.
5.1+ 1.6 weeks, respectively, p=0.028) may suggest that,
besides stretching bout duration, morphological adapta-
tions may require longer time to occur. Although some
fascicle length increases were reported following 6 weeks
of overloaded stretch training [14], the greater fascicle
length that is observed in cross-sectional studies in danc-
ers [17] and gymnasts [54, 55] compared with athletes
from other sports, suggests that long-term stretching
training with high-volume and intensity is important for
adaptations in muscle morphology. In this respect, more
evidence is needed regarding the effects of long-term
stretching protocols on longitudinal fascicle growth,
applied throughout childhood and adolescence, which
may be a suggestion for future studies.

A greater fascicle length during stretching was
observed in the experimental groups, compared with
the control groups, with a small effect size (SMD=0.39,
p=0.026). Previous cross-sectional studies observed
greater fascicle length during stretching in flexibility
trained compared to untrained adults [24, 56] and the
same was found in flexibility trained children [54]. The
limited evidence provided by the few studies that meas-
ured fascicle length during stretching (n=6), has shown
relatively larger increases compared with those observed
at rest (10.9 vs.5.3%) [15, 24]. The large increases in fas-
cicle extensibility found in this meta-analysis are an
important finding. It is not known if the increased fas-
cicle extensibility following stretching training reflects
changes in series elastic (e.g., the muscle internal aponeu-
roses, the structural protein “titin’, the elastic elements
in the cross-bridges aponeurosis) or contractile elements
(i.e. sarcomeres), and it remains undetermined how these
changes may affect the mechanics of muscle contrac-
tion, the metabolic cost of movement and the storage and
release of elastic energy [57].

The main meta-analysis showed no differences in fasci-
cle angle following static stretching training (SMD =0.08,
»=0.30) and no changes were found following high or
low stretching volumes (p=0.86 and p=0.13, respec-
tively) and intensities (p=0.40 and p =0.32, respectively).
In line with the results of this systematic review, sev-
eral studies reported unaltered fascicle angles following
stretching training [16, 26], while one study reported
trivial decreases in gastrocnemius lateralis fascicle angle
[14]. Fascicle angle, defined as the angle between a fasci-
cle’s orientation and the aponeurosis axis, is thought to
determine force contribution of the fascicle during skel-
etal movement [58]. However, it has recently been sug-
gested that fascicle angle represents predominantly a
“packing” strategy with little functional significance and
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unrelated to the magnitude of force generation through
the tendon structure [58]. In this respect, current evi-
dence suggests that the tension generated by stretching
induces no changes in fascicle angle.

Also, this meta-analysis showed that there was no dif-
ference in muscle thickness following static stretching
training (SMD=0.11, p=0.18). Most studies reported
no changes in muscle thickness following static stretch-
ing training (Fig. 8). However, subgroup analyses showed
a small effect of high intensity stretching on muscle
thickness (SMD=0.27, p=0.021, subgroup difference
p=0.016). As can be seen in Fig. 8, this was due to four
studies that combined high intensity and very high total
volume protocols (i.e., accumulation of >450 min of total
stretching duration) applied to the gastrocnemius mus-
cle [9, 15, 16, 37]. Notably, the fifth study which showed
a large improvement in muscle thickness with high-
intensity, but low-volume stretching, involved the vastus
lateralis muscle [21]. Thus, it may be argued that a combi-
nation of high intensity and very high volume of stretch-
ing (>7.5 h) is required to increase muscle thickness of
the gastrocnemius [9, 15, 16, 37]. Despite the apparent
importance of high intensity and high-volume combina-
tion to induce a hypertrophic response following static
stretching training, further investigation is required to
determine the magnitude and the characteristics or the
appropriate programs.

Regarding muscle cross-sectional area, only two studies
examined [15, 37] the effect of static stretching training
on gastrocnemius muscle anatomical cross-sectional area
in humans. In one study examining adolescent female
volleyball players it was found that intense static stretch-
ing increased cross-sectional area in the gastrocnemius
of the stretched leg (by 23%), while the non-stretched leg
also hypertrophied, albeit by a significantly smaller per-
centage (13%, p<0.01) [15]. The difference in the percent
increase of the cross-sectional area between the stretched
and the control legs may be attributed to the interac-
tion of volleyball and stretching training, which further
enhanced muscle hypertrophy [15]. In the second study
that measured the effects of stretching on cross-sectional
area, no changes were found in the gastrocnemius muscle
following 10-weeks of low volume and intensity stretch-
ing [37].

Since high volume and high intensity static stretching
has the potential to induce longitudinal fascicle growth,
muscle thickness and muscle cross sectional area, future
studies should examine how these changes in muscle
morphology may influence muscle mechanical function
(e.g., force—length relationship). Some interventions indi-
cate that increased fascicle length may shift the optimal
muscle length for force production [2] and may widen
the entire force—length relationship [59], but this remains
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to be verified for stretching training interventions. Since
some injuries occur close to the end of the range of
motion with the muscle in a lengthened state, this shift of
the force—length relationship could play a role in reduc-
ing such injuries [52]. In addition, future research should
examine the effect of longitudinal fascicle growth follow-
ing stretching on velocity of contraction during shorten-
ing [49], as well as on the torque—angle relationship.

Limitations

One limitation is that in this systematic review the
effects of stretching training could not be separated for
males and females, as only one study reported results for
females [15], while seven out of the 19 studies reported
collective values for both sexes [9, 16, 17, 20, 21, 26, 45].
Furthermore, comparisons between athletic and non-
athletic populations were not feasible, as only one study
included an athletic population [15]. Another limitation
concerns the characterization of stretching intensity,
which was based on perceived discomfort and pain and
not on any objective measures of intensity. This is an
inherent limitation of almost all stretching interventions
which should be addressed in future studies. Finally, most
of the included studies examined the ankle joint (15 out
of 19 studies), and there was limited information regard-
ing other joints.

Conclusions

Static stretching training induces trivial increases in fas-
cicle length at rest and small increases in fascicle length
during stretching in young, healthy participants. High
volumes of static stretching and high stretching intensities
are necessary to induce increases in fascicle length and
muscle thickness, while fascicle angle remains unaffected
by static stretching. These results show that long-term
static stretching, using extended bouts of intense muscle
elongation, may modify muscle architecture, with possible
effects on muscle function. In that respect, static stretch-
ing may be used not only to increase ROM, but also to
enhance muscle performance, either alone or in combina-
tion with other interventions, in health and disease.
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